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Abstract

Background: The burden of drug resistant tuberculosis in Africa is largely driven by the emergence and spread of
multidrug resistant (MDR) and extensively drug resistant (XDR) Mycobacterium tuberculosis strains. MDR-TB is defined
as resistance to isoniazid and rifampicin, while XDR-TB is defined as MDR-TB with added resistance to any of the
second line injectable drugs and any fluoroquinolone.

The highest burden of drug resistant TB is seen in countries further experiencing an HIV epidemic. The molecular
mechanisms of drug resistance as well as the evolution of drug resistant TB strains have been widely studied using
various genotyping tools. The study aimed to analyse the drug resistant lineages in circulation and transmission
dynamics of these lineages in Africa by describing outbreaks, nosocomial transmission and migration. Viewed as a
whole, this can give a better insight into the transmission dynamics of drug resistant TB in Africa.

Methods: A systematic review was performed on peer reviewed original research extracted from PubMed reporting
on the lineages associated with drug resistant TB from African countries, and their association with outbreaks,
nosocomial transmission and migration. The search terms “Tuberculosis AND drug resistance AND Africa AND
(spoligotyping OR molecular epidemiology OR 1S6770 OR MIRU OR DNA fingerprinting OR RFLP OR VNTR OR WGS)"
were used to identify relevant articles reporting the molecular epidemiology of drug resistant TB in Africa.

Results: Diverse genotypes are associated with drug resistant TB in Africa, with variations in strain predominance
within the continent. Lineage 4 predominates across Africa demonstrating the ability of “modern strains” to adapt
and spread easily. Most studies under review reported primary drug resistance as the predominant type of
transmission. Drug resistant TB strains are associated with community and nosocomial outbreaks involving MDR-
and XDR-TB strains. The under-use of molecular epidemiological tools is of concern, resulting in gaps in knowledge
of the transmission dynamics of drug resistant TB on the continent.

Conclusions: Genetic diversity of M. tuberculosis strains has been demonstrated across Africa implying that diverse
genotypes are driving the epidemiology of drug resistant TB across the continent.
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Background

Multidrug resistant tuberculosis (MDR-TB) is defined as
resistance to isoniazid and rifampicin, the most potent
anti-TB drugs, while extensively drug resistant tubercu-
losis (XDR-TB) is defined as MDR-TB with additional
resistance to any of the second line injectable drugs
(aminoglycosides) and any fluoroquinolone (FQ) [1, 2].
Rifampicin resistance (RR) is used as a proxy for MDR-TB
and rapid detection of RR strains is recommended [1, 2].

Burden of drug resistant tuberculosis in Africa

Globally, an estimated 10 million people developed TB
in 2017 alone with over half a million estimated RR-TB
cases (82% of which had MDR-TB) [1]. Close to 50% of
MDR/RR-TB cases were reported in three countries,
namely; India, China and Russian Federation. In 2017,
26,845 MDR/RR-TB and 867 XDR-TB cases were noti-
fied in Africa [1]. Of the notified MDR/RR- and XDR-
TB cases, treatment enrolment was significantly low
(21% for MDR/RR-TB and 1% for XDR-TB) [1]. The
highest proportion of TB/HIV co-infection is also seen
in this continent (31% on average), with some regions
having co-infection rates higher than 50% [1, 3]. It is
therefore important to identify TB/HIV co-morbidity in
these high risk areas.

Treatment regimens implemented

Up to 2018, the World Health Organisation (WHO) rec-
ommended that MDR-TB be treated with a standard
regimen of second line anti-TB drugs which includes a
combination of an injectable drug, a fluoroquinolone,
other core anti-TB agents as well as the first line anti-TB
drugs pyrazinamide and ethambutol, subject to drug sus-
ceptibility testing (DST) results [2]. These drugs are how-
ever less potent, more toxic and require a prolonged
treatment period of up to 24 months. More recently how-
ever, the WHO has endorsed a shorter 9-12 month regi-
men which has been demonstrated to be equally effective
in the treatment of MDR-TB and consists of a combination
of anti-TB agents [3, 4]. Since 2014, at least 12 countries
have introduced this short MDR-TB regimen in Africa [4].
Inappropriate implementation of the shorter MDR-TB
treatment regimen however poses a risk of acquiring add-
itional resistance in affected patients, as currently observed
for the longer MDR-TB treatment regimen [3, 4]. It is in
this light that the WHO recommends DST before com-
mencement of treatment and that the shorter regimen only
be made available to patients that have not received prior
MDR-TB treatment [4]. Furthermore, the shorter MDR-TB
regimen is not recommended for patients with second-line
drug resistance, pregnant patients and patients with extra-
pulmonary TB [4].
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Diagnosis of drug resistant tuberculosis

Culture-based phenotypic DST (pDST) remains the gold
standard for the diagnosis of drug resistant TB [1]. The
WHO has however endorsed the use of nucleic acid
tests (NATSs) such as the GeneXpert MTB/RIF assay and
the molecular line probe assay (LPA), which provide a
more rapid diagnosis [1]. However, they are limited in
the range of drug susceptibility that can be detected [1].
Furthermore, the running costs associated with these
techniques, the need for expertise and the lack of avail-
ability at point of care could explain the low uptake of
these rapid diagnostic tools across Africa.

The diagnostic algorithm for drug resistant TB varies
across Africa with 15 out of 25 high TB and high MDR-
TB burden countries being listed as having a national
policy that recommends the use of rapid diagnostic tools
as the initial diagnostic tool for presumptive TB [1]. Fur-
thermore 12 out of 25 high TB and high MDR-TB bur-
den countries in Africa are reported as having a national
policy for universal pDST [1]. However the number of
cases tested with rapid diagnostic tests and pDST is
highly variable, with largely poor diagnostic coverage,
demonstrating that a high proportion of drug resistant
cases go undetected. Of concern is the low rate of DST
results for rifampicin and second line drugs. Overall,
there is a need to strengthen laboratory capacity and to
increase uptake of rapid diagnostic tools in order to im-
prove case detection and treatment of drug resistant TB
in Africa.

Drug resistance tuberculosis surveillance

Routine and frequent epidemiological surveillance is
critical for understanding the burden of drug resistant
TB in a given region and for planning and policy devel-
opment and policy implementation. The major drug re-
sistance TB surveillance methods that have been used in
Africa include case notifications combined with expert
opinions, prevalence surveys, and capture-recapture to
estimate incidence [1]. However, the most effective drug
resistance monitoring tool has been demonstrated to be
continuous surveillance of TB patients through pDST
and systematic analysis of routinely collected data [1]. It
is a concern that there is scanty data on the prevalence
of drug resistant TB across Africa [1].

Between 2010 and 2015, only 16 of 54 African coun-
tries (30%) completed national drug resistance preva-
lence surveys [1]. Older drug resistance survey data is
available from 8 countries for the period 2005 and 2009
[1]. Since 2016, there were drug resistance TB surveys
on-going in 7 countries while fourteen countries in
Africa currently do not have any survey data [1]. From the
countries with repeat drug resistance survey data, some
countries have reported an increase in the prevalence of
MDR-TB and drug resistant TB in general [5, 6]. Other
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countries have demonstrated no significant changes in
prevalence rates of drug resistant TB [7-9].

Molecular typing tools in epidemiological investigations
Since mid-1990s, several techniques have been validated
for use in molecular epidemiological investigations of M.
tuberculosis strain diversity and clustering including
spacer oligonucleotide typing (spoligotyping), insertion se-
quence 6110-based restriction fragment length poly-
morphism (IS6110-RFLP) and Mycobacterial Interspersed
Repetitive Units — Variable Number Of Tandem Repeats
(MIRU-VNTR) [10-12]. Furthermore, next generation
whole genome sequencing (WGS) of M. tuberculosis clin-
ical isolates provides invaluable knowledge on genetic di-
versity and microevolution of the M. tuberculosis genomes
in circulation [13]. Whole genome sequencing is preferred
to other typing techniques due to the robustness and high
resolution offered by the technique [13]. It however does
not negate the usefulness of other typing tools due to limi-
tations experienced in resource limited countries. These
include the lack of expertise to set up libraries and to ana-
lyse sequencing data, the cost of equipment and the gen-
eral running cost.

Several epidemiological studies have been conducted
across Africa, focused on drug resistance, transmission
dynamics and the population structure of drug resistant
TB strains [14-16]. However, there is very limited
systematic data on the molecular epidemiology of drug
resistant TB in Africa. This review therefore aims to
synthesise available knowledge of drug resistant TB in
Africa, with a particular focus on lineages in circulation,
and lineages associated with outbreaks, nosocomial
transmission and migration.

Methods

Search strategy and selection criteria

A systematic review was conducted of peer reviewed ori-
ginal research on the molecular epidemiology of drug re-
sistant TB from African countries, extracted from PubMed
on July 3, 2019 for relevant articles published between 1999
and 2019. The search terms “Tuberculosis AND drug re-
sistance AND Africa AND individual country name for all
54 African countries AND (spoligotyping OR molecular
epidemiology OR IS6110 OR MIRU OR DNA fingerprint-
ing OR RFLP OR VNTR OR WGS)” were used to identify
relevant articles reporting the molecular epidemiology of
drug resistance in Africa. Studies were eligible for inclusion
in the analysis if they described the lineages associated with
drug resistant TB, outbreaks, nosocomial transmission and
migration in any African countries using one or more of
the following techniques; spoligotyping or 1S6110 RFLP or
MIRU VNTR or WGS. The search resulted in 187 articles
of which 55 met the inclusion criteria, as summarised in
Table 1. To generate the review, the following variables
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were extracted from the studies; pDST, proportion of clus-
tered drug resistant strains, HIV/TB coinfection rate and
genotyping methods.

Results

Overview of drug resistant Mycobacterium tuberculosis
strain types in Africa

Molecular epidemiological data

The molecular mechanisms of drug resistance as well as
the evolution of drug resistant strains in Africa have been
studied using a variety of genotyping tools [10-13]. This
has provided some insight into the transmission dynamics
of drug resistant TB. Most studies (89%) under review
here have used spoligotyping to describe the molecular
epidemiology of drug resistant TB in Africa although there
are a number of studies which have used highly discrimin-
atory methods which include WGS, IS6110-RFLP and
MIRU-VNTR [13-16].

Population structure of drug resistant TB genotypes in
Africa

Sporadic molecular mycobacteriological studies have
been conducted within Africa (Figs. 1 and 2), with South
Africa having the vast majority of data on the continent.
Diverse genotypes have been associated with drug resist-
ant TB (Fig. 1, Fig. 2, Table 1), with particular genotypes
being more predominant [52, 58, 59, 66, 71]. For instance,
the Beijing genotype is widespread across parts of Africa
[38, 44, 60]. The population structure of drug resistant TB
is however not homogeneous (Figs. 1 and 2), with certain
strains being more predominant in specific population
groups [26, 38, 53, 72, 73]. For example, the Haarlem and
CAS genotypes are predominantly associated with drug
resistance including MDR-TB in parts of North and East
Africa while in Southern and West Africa the Beijing and
LAM genotypes are highly associated with drug resistance
(Figs. 1 and 2) [28, 30, 34, 45, 61, 65, 72]. Further,
country-wise comparisons show a correlation between
genotypes associated with drug susceptible TB and drug
resistant TB, implying that drug resistant TB is to a large
extent acquired by individuals within their respective
African countries [14, 16, 45, 66, 74].

Associations between specific drug resistant TB strains
and HIV co-infection have been noted, with high mor-
tality rates being observed in the context of TB/HIV co-
infection [56, 64, 74]. Genotypes such as Beijing, Haar-
lem and LAM have been associated with high levels of
drug resistance and high mortality rates in both HIV
seropositive and seronegative individuals [50, 51, 57, 65].
A clear distinction has been observed in the population
structure of genotypes associated with mono-resistance,
MDR- and XDR-TB (Table 1). In parts of South Africa
the F15/LAM4/KZN and Beijing genotypes have been
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associated with XDR-TB while LAM11_ZWE is associ-
ated with MDR-TB in parts of Zimbabwe [54, 61, 70].

A high degree of clustering of drug resistant TB iso-
lates has been observed in parts of Africa [23, 39, 40,
75]; this is of great concern as it implies that there is re-
cent and ongoing transmission of drug resistant TB
strains within the region. Furthermore, a correlation be-
tween drug resistant strains in the adult population and
in children has been demonstrated [62], suggestive of
adult to child transmission. There is however very lim-
ited molecular typing data on drug resistant TB amongst
children and household contacts of drug resistant TB
patients in the rest of Africa to confirm this.

Modern lineages (East Asian, EAI and Euro American)
have been associated with drug resistance in Central and
West Africa (Figs. 1 and 2) [18, 21], regions predomin-
antly associated with Mycobacterium africanum (MAF)

[18, 21, 35, 37]. Lineage 5 (West-Africa 1) and 6 (West-
Africa 2) however continue to predominate in West Af-
rica and are largely associated with drug susceptible TB
[24, 36, 46, 49]. The introduction of these drug resistant
“modern strains” threatens management of drug resist-
ant TB in the region [22, 31, 67, 68, 76].

Application of molecular methods to describe
transmission dynamics of drug resistant tuberculosis in
Africa

Acquired MDR- and XDR-TB

There is evidence that acquisition of MDR-and XDR-TB
also plays an important role in the burden of drug resist-
ant TB in endemic regions of Africa [77-81]. Inadequate
treatment has been shown to be a significant driving
force in the development of drug resistant TB, driven by
factors such as poor adherence to treatment, diagnosis
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delay and low quality anti-TB drugs [82, 83]. The sever-
ity of drug resistance in South Africa has been demon-
strated to be much higher than other parts of Africa,
this could be related to South Africa being the first
country to administer second-line treatment on the con-
tinent in 2001 [84], and could be also be related to better
reporting in South Africa.

The WHO recommends the use of a standardized TB
treatment regimen which has been adopted by most
countries in the region [2]. In the absence of laboratory
monitoring and surveillance, mainly due to poor infra-
structure and lack of resources, the risk of acquiring re-
sistance is heightened in high TB burden settings [19,
82, 85]. Further, standardized TB treatment has been
shown to be unsuccessful in preventing the spread of
drug resistant TB [83, 86]. Therefore, there is a need to
implement routine DST and surveillance, supported by

molecular epidemiology, for active case finding and to
guide effective TB treatment in high risk population
groups. On the contrary, a standardized shorter MDR-
TB regimen has been demonstrated to be highly effect-
ive, with a treatment success rate of 89% in Cameroon, a
high MDR-TB setting [87].

Outbreaks

Drug resistant strains of M .tuberculosis have been
linked with six distinct outbreaks in parts of Africa
(Table 2) [19, 56, 59, 60, 65, 82]. Outbreaks are charac-
terised by sporadic spread of a particular strain of drug
resistant TB unlike ongoing transmission which is charac-
terised by constant spread of strains over a longer period of
time. A prominent outbreak in Tugela Ferry KZN (mostly
amongst HIV positive individuals) involving the F15/
LAM4/KZN lineage, brought global focus onto XDR-TB
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and revealed that XDR-TB strains are transmissible [56].
The main factors associated with the outbreak were an in-
adequate TB control program coupled with a high HIV
prevalence in the affected population [56]. This stresses the
need for improved TB infection prevention and control
(IPC) measures, together with rapid diagnostics in the suc-
cessful control of TB in general and XDR-TB in particular.

Outbreaks in vulnerable population groups of institu-
tionalized and HIV positive individuals have also been
documented [56, 82]. High clustering rates of drug resist-
ant isolates were observed in a mining community which
had a high rate of HIV sero-positive individuals (Table 2)
[82]. The outbreak was as a result of an inefficient TB
control program and diagnosis delay with the biannual
chest radiography screening only diagnosing 30% of TB
cases in this group of miners [82]. Recommendations have
since been made to improve detection and to promote
parallel treatment of TB and HIV in high risk groups [82].

Community outbreaks of MDR-TB in HIV sero-
negative, non-institutionalized individuals have also been
reported [19, 60]. Molecular investigations have revealed
diversity in genotypes associated with outbreaks of drug
resistant TB (Table 2). Genotypes initially identified to be
responsible for drug resistant TB outbreaks have been
demonstrated to re-emerge in communities as was the
case in Tunisia [90]. A subsequent MDR-TB Haarlem
strain outbreak was reported amongst the post-outbreak
patients’ population group in which the same strain was
identified as the progenitor [90]. The findings of these
drug resistant TB outbreak studies emphasise that MDR-
TB and indeed other drug resistant TB outbreaks are not
limited to specific population groups such as the immuno-
compromised and the institutionalized [60, 65, 90].

There is some evidence that particular bacterial geno-
types are associated with outbreaks. The Beijing genotype
for instance, which is endemic in parts of South Africa,
was linked to an outbreak of MDR-TB at a school in the
Western Cape Province [59]. Molecular characterization
confirmed that all isolates belonged to cluster R220 [59].
The genotype was further associated with a streptomycin-
resistant outbreak in Benin (Table 2) [19]. The occurrence
of an outbreak caused by the Beijing genotype in West Af-
rica further highlights the regional emergence of “modern
strains” which appear highly virulent and pose a potential
threat to TB control efforts in the region.

While host and strain genetics may play a role in driv-
ing outbreaks, inappropriate treatment, non-compliance
to treatment and delays in diagnosis are amongst risk
factors that have been linked to outbreaks within the
continent [56, 60, 82].

Nosocomial transmission
The extremely limited data on nosocomial transmission
of drug resistant TB in Africa is alarming and places
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emphasis on the need for molecular epidemiological
studies in these high risk settings. Hospital-acquired
drug resistant TB has been reported in Africa (Table 2)
[15, 82, 88, 89]. An outbreak of the XDR-TB F15/LAM4/
KZN strain was described in a district hospital in Tugela
Ferry, KZN, South Africa [88]. Epidemiological links for
82% of the patients were made and clustering was ob-
served in 92% of strains [88]. The major risk factors that
have been associated with hospital-acquired drug resist-
ant TB are lack of proper IPC measures such as over-
crowded wards, poor ventilation and delayed diagnosis
[15, 88]. This coupled with the high HIV prevalence ex-
perienced in most TB endemic regions makes nosoco-
mial transmission a significant driving force in the
transmission of drug resistant TB strains.

Rather than a single point-source outbreak, social net-
work analysis has revealed that patients linked to noso-
comial transmissions have a high degree of community
interconnectedness [82, 88, 91]. This implies that trans-
mission is occurring both in the community and in the
health care facilities (Table 2). Prolonged exposure to
patients with drug resistant TB and frequent, concurrent
hospital admissions were common in most XDR-TB pa-
tients providing strong evidence that nosocomial trans-
mission had occurred [88, 91].

Transmission of TB and drug resistant TB in particu-
lar is not only limited to patients receiving care and
treatment in health care facilities but has been described
in healthcare workers (HCWs) [92]. HCWs are at an in-
creased risk of acquiring drug resistant TB at the work
place, especially in the absence of effective IPC measures
[93]. It has been demonstrated that diabetes mellitus
and HIV infection are common co-morbidities in HCW's
that were infected with MDR-TB in a teaching hospital
in South Africa [92]. Other factors that have been asso-
ciated with occupational acquisition of drug resistant TB
and TB in general include: increased contact with pa-
tients who typically present to the health care facility
when they are highly infectious, complacency and low
awareness of self-risk typically seen in longer-serving
HCWs [92, 93].

Recommendations made towards improved control
measures are to prevent transmission through early diag-
nosis of resistant TB, minimize congregation areas in
hospitals by redesigning wards and out-patient areas and
use of personal protective equipment [89, 91-93].

Migration

Migration has been demonstrated to play a critical role
in the spread of drug resistant TB strains globally, with
the majority of cases being reported in high-income
countries originating from economic migrants from high
TB burden countries [94]. There is abundant literature
from high-income countries owing to excellent TB
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surveillance and monitoring [94]. In Africa however,
there is very limited information on the impact of migra-
tion on transmission of drug resistant TB; this is mainly
due to poor surveillance and monitoring. Further, mi-
grant populations typically have poor access to health
care and social structures.

Lineages and strains that had previously not been de-
scribed in particular population groups have been
hypothesised to have been introduced to various regions
by immigrants [39, 86, 94]. However, the absence of
baseline data makes it rather difficult to prove this hy-
pothesis as there is very limited data on drug resistant
genotypes that are in circulation within Africa. On the
other hand, migration is rife in Africa, mainly due to
political instability, civil wars and poverty, and it poses a
major concern in the fight against TB and drug resistant
TB in particular [95, 96].

Drug resistant strains with streptomycin resistance
were detected in a refugee camp in Kenya [39]. Upon
comparison to strains in the general populace, the refu-
gee strains were unique to the camp [39]. The nomadic
nature of refugees means that they are highly capable of
spreading drug resistant strains [95]. There is a higher
possibility of refugees failing to complete treatment due
to their drifting nature and instability. Further, there is a
possibility that the transmission of drug resistant strains
is facilitated by a poor TB control program in the coun-
try of origin and/or in the refugee camp [39, 87, 95, 97].

Migration is not only an important factor in transmis-
sion of drug resistant TB across country borders and
across continents, it has also been demonstrated to be
an important means of transmission within countries as
a result of movement to new cities and provinces in
search of better employment opportunities and better
health care facilities [39, 53]. For instance, the F15/
LAM4/KZN strain has been shown to be widespread
both in districts of KZN and in surrounding areas [53,
98]. Further, transmission of drug resistant TB strains
has been demonstrated between provinces and districts
in South Africa [99, 100]. This stresses a need for rigor-
ous screening of migrants coming from high TB en-
demic regions and also calls for development and
implementation of TB IPC polices in congregate settings
in high TB burden regions. However, the above men-
tioned recommendations are currently not feasible in
most African countries due to the porosity of the bor-
ders; therefore it is recommended that employers be
more vigilant with screening of migrant workers.

Discussion

The emergence and spread of drug resistant TB strains
in the form of MDR-and XDR-TB continue to hinder
global efforts to curb the disease; such as the WHO End
TB Strategy which aims to reduce deaths associated with
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TB as well as cut down on new TB cases [1]. The appli-
cation of molecular epidemiological tools has enabled a
better understanding of the global phylogeography of TB
[13-16]. In Africa however, there is very limited and
sporadic data for the genotypes associated with drug re-
sistant TB. It is important for African countries to im-
plement rigorous drug resistant TB surveillance systems
for early case detection and treatment as well as moni-
toring of drug resistance trends. Routine surveillance
would better inform TB control programs on the inci-
dence of drug resistant TB in a given population.

Knowledge of the genotypes in circulation within a
given population and the transmission dynamics of drug
resistant TB would be important in guiding policy
makers on the efficacy of the current treatment regimen
and will help identify deficiencies in national TB control
programs. Most studies under review used spoligotyping
which offers a low resolution of clusters. Overall, WGS
provides a superior level of understanding strain related-
ness compared to IS6110-RFLP and spoligotyping. There
is an urgent need to build in-country capacity to enable
molecular investigations to be conducted locally using
more advanced techniques of WGS. This would require
laboratory capacity and training of laboratory and re-
search personnel and would further require local and
international funding.

Genetic diversity of M .tuberculosis strains has been
demonstrated across Africa implying that diverse geno-
types are driving the epidemiology of drug resistant TB
across the continent. There are variations from region to
region and particular genotypes have been demonstrated
to be more predominant in certain countries and re-
gions. There is a high degree of genetic diversity in the
predominant strains in West Africa with both ancient
and modern strains being associated with drug resistant
TB [10, 20, 37, 45].

The Beijing and LAM genotypes are widespread across
Africa demonstrating the ability of these “modern strains”
to adapt and spread easily [17, 38, 54, 60]. It is however
worth noting that the strain relatedness or transmission
dynamics of these genotypes are not fully understood due
to the lack of highly discriminatory tools of WGS in the
reviewed studies. In contrast, the “ancient strains” such as
MAF strains are largely restricted to West Africa where
these strains are mostly associated with drug susceptible
TB [10, 45, 46]. A similar observation is made with the
Haarlem genotype which is associated with drug resistant
TB in East and North Africa [26, 65].

The drug resistant TB epidemic in Africa has been at-
tributed to several drivers, including socio-economic fac-
tors (poverty, overcrowded living conditions) and
inefficient TB IPC policies (inappropriate treatment, lack
of surveillance, diagnostic and treatment delay). MDR-
TB case finding and treatment remain a challenge in
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Africa with high TB and high MDR-TB burden coun-
tries falling short on treatment enrolment of new MDR-
TB cases, mainly due to the lack of adequate DST [1].
This highlights the urgent need for development and im-
plementation of TB IPC policies in high-risk population
groups and also calls for strengthening of outbreak re-
sponse measures.

There remains a large pool of MDR- and XDR-TB
cases that are untreated and are a potential source of
drug resistant TB in the various communities [1]. There
is a need for united efforts from the continent to im-
prove case detection and treatment for prevention and
control of drug resistant TB. Further, high mortality
rates have been observed in MDR- and XDR-TB patients
and this is worsened by co-infection with HIV [56]. This
places emphasis on the need to strengthen the integra-
tion of HIV/TB screening and treatment in Africa.

The main challenge for TB activities across the contin-
ent is the lack of adequate funding. The majority of
countries receive limited funding toward the national TB
program with almost a third of the budget being un-
funded on average in Africa [1]. Addressing this short-
coming will require collaborative efforts from global
funders as well as domestic support from local govern-
ment. Concerns regarding international funding in-
creased following the proposed budget cuts after the
election of Donald Trump as the president of the USA
and after the” Brexit” vote in the UK [101, 102]. Changes
from the major global TB funders could result in the
disintegration of already weak TB control programs in
developing countries across the world.

Political instability is a source for concern as it leads
to failing of health care infrastructure which in turn re-
sults in poor surveillance and treatment efforts. This has
been demonstrated in migrant population groups with
high rates of untreated drug resistant TB being found in
these groups [94]. There is a need to develop and imple-
ment rigorous TB screening and treatment of migrants
and TB suspects across Africa. This is however made
difficult by the poor laboratory infrastructure such as
lack of rapid diagnostic techniques for these highly mo-
bile population groups.

Conclusions

Through molecular epidemiology, it has been demon-
strated that drug resistant TB which is endemic in parts
of Africa is both acquired and transmitted. Acquired
drug resistant TB is largely driven by inadequate treat-
ment, as seen in the case of standardized treatment in
the absence of DST results, and non-adherence to treat-
ment. On the other hand, drug resistant TB has been
demonstrated to be transmitted in communities and
hospital outbreaks have been reported mainly due to
poor IPC measures. On average, the treatment success
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rates for MDR- and XDR-TB are low for Africa, 54 and
28% respectively.

The gap in knowledge on the transmission dynamics
and molecular epidemiology of drug resistant TB across
the continent is a hindrance in the management of drug
resistant TB and calls for improved surveillance efforts.
Molecular epidemiological studies play an important role
in understanding the transmission dynamics of drug re-
sistant TB across Africa, and will play a part in address-
ing this knowledge gap. Addressing these key knowledge
gaps will guide effective TB treatment in high risk popu-
lation groups. Additional studies are required to better
understand the epidemiology and associated factors of
drug resistant TB in Africa as a whole.
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